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Universal Adversarial Attacks
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Defending against Universal Adversarial Attacks

* Selective feature regeneration effectively restores robustness
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Ranking CNN Filters Based on Noise Susceptibility
Sample Baseline DNN ¢
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Robustness to Unseen Universal Adversarial Attacks

Defense trained on only UAP noise samples
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Defending Against Universal Attacks Through Selective Feature Regeneration

Robustness to image-agnostic noise: Robustness to unseen universal attacks:
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- Summary:
Proposed Proposed * Novel ¢1-norm measure identifies and ranks adversarially susceptible feature maps
Defense Defense
l l  Selective regeneration of only the most vulnerable feature maps restores robustness
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Code: https://github.com/tsborkar/Selective-feature-regeneration



https://github.com/tsborkar/Selective-feature-regeneration

