Defending Against Universal Attacks Through Selective Feature Regeneration

Tejas Borkar¹, Felix Heide^{2,3}, Lina Karam^{1,4}

¹Arizona State University ²Princeton University ³Algolux ⁴Lebanese American University

Universal Adversarial Attacks

• Image agnostic and transferable across networks

Bald eagle 99%

Defending against Universal Adversarial Attacks

Bald eagle 99%

Bald eagle 99%

Suppressing perturbations in ranked

Ranking CNN Filters Based on Noise Susceptibility

Sample Baseline DNN Φ

Robustness to Unseen Universal Adversarial Attacks

• Defense trained on only UAP noise samples

Defending Against Universal Attacks Through Selective Feature Regeneration

Robustness to image-agnostic noise:

Robustness to unseen universal attacks:

Code: https://github.com/tsborkar/Selective-feature-regeneration